| Na | ame: Date: | |--------------------------|--| | | Student Exploration: Ionic Bonds | | | ecabulary: chemical family, electron affinity, ion, ionic bond, metal, nonmetal, octet rule, she lence electron | | Pr | ior Knowledge Questions (Do these BEFORE using the Gizmo.) | | 1. | Nate and Clara are drawing pictures with markers. There are 8 markers in a set. Nate has markers and Clara has 7. What can Nate and Clara do so that each of them has a full set? | | 2. | Maggie is sitting at a table with Fred and Florence. Maggie has 10 markers, but Fred and Florence each have only 7 markers. How can they share markers so each has 8? | | Ju:
ato
To
sele | zmo Warm-up st like students sharing markers, atoms sometimes share or swap electrons. By doing this, oms form bonds. The <i>lonic Bonds</i> Gizmo™ allows you to explore how ionic bonds form. begin, check that Sodium (Na) and Chlorine (Cl) are lected from the menus at right. Click Play (▶) to see extrons orbiting the nucleus of each atom. (Note: These om models are simplified and not meant to be realistic.) | | 1. | Each atom consists of a central nucleus and several shells that contain electrons. The outermost electrons are called valence electrons . (Inner electrons are not shown.) | | | How many valence electrons does each atom have? Sodium: Chlorine: | | 2. | Click Pause (). Elements can be classified as metals and nonmetals . Metals do not hold on to their valence electrons very tightly, while nonmetals hold their electrons tightly. Electron affinity is a measure of how tightly the valence electrons are held. | | | A. Try pulling an electron away from each atom. Based on this experiment, which aton | | | is a metal? Which is a nonmetal? | | | B. Try moving an electron from the metal to the nonmetal. What happens? | | | | | Activity A: | Get the Gizmo ready: | | | |-------------|--|-------------|--| | lons | Click Reset. |))• | | | 10115 | Check that sodium and chlorine are still selected. | | | Introduction: Some of the particles that make up atoms have an electrical charge. Electrons are negatively charged, while protons are positively charged. Particles with opposite charges (+ and –) attract, while particles with the same charge (+ and + or – and –) repel. | Qu | estion | what happens when atoms gain or it | ose electrons? | |--|---------|---|---| | 1. | around | I the atoms in the Gizmo. The first ring h | atoms in specific shells, shown by the rings olds two electrons, and the second holds vn; you can assume these rings are full.) | | A. Observe the sodium and chlorine atoms. Assuming that the inrelectrons, how many electrons are there total in each atom? | | | | | | | Sodium: | Chlorine: | | | В. | Each atom is neutrally charged, which r of protons and electrons. Based on this | means that each atom has the same number , how many protons are in each atom? | | | | Sodium: | Chlorine: | | Observe: Most atoms are stable with a configuration of eight valence electrons. This is
known as the octet rule. How many valence electrons does each atom have? | | | | | | | Sodium: | Chlorine: | | 3. | can ca | | -, and each proton has a charge of 1+. You sting the number of electrons from the number of the chlorine atom. | | | A. | What are the charges of each atom nov | v? Sodium: Chlorine: | | | | Turn on Show charge to check. These | charged atoms are called ions. | | | В. | Is each ion stable? Explain. | | | | | Click Check in the lower right corner of | the Gizmo to check. | | 4. | Think a | and discuss: Why is there an attraction b | etween the two ions in this chemical bond? | | | | | | | Act | tiv | ity | B: | |-----|-----|-----|----| |-----|-----|-----|----| ## Ionic compounds ## Get the Gizmo ready: - Click Reset. Turn off Show charge.Select Lithium (Li) and Oxygen (O). ## Question: How are ionic compounds formed? | 1. | Observe: Look at the red lithium atom and the blue oxygen atom. Recall that most atoms are stable when their outermost ring has eight electrons. (Some atoms, such as lithium a beryllium, are stable when their outermost ring has two electrons.) | | | | | | |--|---|--|-------------------------|--|--|--| | | A. | A. How many electrons will the lithium atom give up to become stable? | | | | | | | B. | How many electrons does the c | xygen atom need to be | ecome stable? | | | | | C. | Can a stable compound be made | e from these two aton | ns? Explain why or why not. | | | | | | | | | | | | 2. | | oonds: Click Add metal to add a
nium to the oxygen. Click Check . | nother lithium atom, ar | nd then transfer electrons from | | | | | A. | Did you make a stable compour | nd? | | | | | | В. | B. Turn on Show formula . What is the formula of this compound? | | | | | | | C. | Turn on Show charge . What is | the charge of each ior | n? Li Li O | | | | Practice: Use the Gizmo to create stable compounds from the combin After transferring electrons, arrange the atoms to demonstrate the attraction positively charged ions and negatively charged ions. Click Check to compound to the combination of the compound | | | | e the attraction between eck to check each compound. | | | | For each compound, click the camera (local to take a snapshot. Paste each image into a blank document to turn in with this worksheet. Write the ionic charges (such as Ca ²⁺) and chemical formulas below. | | | | | | | | | | ! | onic charges | Chemical formula | | | | | A. | Lithium and fluorine: | Li F | | | | | | B. | Beryllium and oxygen: | Be O | | | | | | C. | Magnesium and fluorine: | Mg F | | | | | | D. | Aluminum and chlorine: | Al Cl | | | | | | E. | Beryllium and nitrogen: | Be N | | | |